直角三角形角度计算公式是什么?

直角三角形角度计算公式:

1、根据勾股定理:b^2=c^2-a^2求出b的长度,然后利用正弦定理b/(sinB)=c/(sin90)得出sinB的值,最后得sinB=((c^2-a^2)开根号)/c,就能求得所需的值。

2、cosB=a/c。

3、余弦定理:b^2=c^2+a^2-2accosB,得cosB=a/c。得到B=arccosa/c。

直角三角形(right triangle)是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。

它除了具有一般三角形的性质外,具有一些特殊的性质:

1、直角三角形两直角边的平方和等于斜边的平方。如图2,∠BAC=90°,则AB?+AC?=BC?(勾股定理)

2、在直角三角形中,两个锐角互余。如图2,若∠BAC=90°,则∠B+∠C=90°

3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。

4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。

5、如图2,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:

(1)(AD)?=BD·DC。

(2)(AB)?=BD·BC。

(3)(AC)?=CD·BC。

射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边的射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项。是数学图形计算的重要定理。