《模型思维》之广播模型、扩散模型和传染模型

一、广播模型

广播模型刻画了思想、谣言、信息或技术通过电视、广播、互联网等媒体进行的传播。这个模型不适用于在人与人之间传播的传染病或思想。由于广播模型更适合描述思想和信息的传播(而不是传染病的传播),所以我们在这里说知情者的人数,而不说感染者的人数。

在给定时间段内,知情者人数等于前一期的知情者人数加上易感者听到信息的概率乘以易感者人数。在广播模型中,相关人群中的每一个人最终都会知悉信息。如果有适当的数据,就可以估计出相关人群的规模。

二、扩散模型

扩散模型假设,当一个人采用了某种技术或患上了某种传染病时,这个人有可能将之传递或传染给与他接触的人。在传染传染病的情况下,个人的选择不会在其中发挥任何作用。一个人患上某种传染病的概率取决于诸如遗传、病毒(细菌),甚至环境温度等因素。在炎热潮湿的季节,疟疾的传播速度要比在寒冷干燥的季节快得多。

在这个模型中,与在传播模型中一样,从长期来看,相关人群中的每个人都会掌握信息。不同的是,扩散模型的采用曲线是S形的。最初,几乎没有人知情,I0很小。因此,能够与知情者接触的易感者人数也必定很小。随着知情者人数的增加,知情者与不知情者之间接触的机会增加,这又使知情者的人数更快地增多。当相关人群中几乎每个人都成了知情者时,新知情的人数会减少,从而形成了S形的顶部。

三、巴斯模型

巴斯模型中的差分方程等于广播模型和扩散模型中的差分方程之和。在巴斯模型中,扩散概率越大,采用曲线的S形就越显著。电视、收音机、汽车、电子计算机、电话机和手机的采用曲线形状都是r形和S形的组合。

四、SIR模型

SIR模型会产生一个临界点,就是所谓的基本再生数R0,也就是接触概率乘以扩散概率与痊愈概率之比。某种传染病,如果R0大于1,那么这种传染病就可以传遍整个人群,而R0小于1的传染病则趋于消失。在这个模型中,信息(或者,在这个例子中是传染病)并不一定会传播到整个相关人群。能不能做到这一点取决于R0的值。

这个模型意味着,这些概率只要发生了微小的变化,就可以使R0移动到高于零的水平,从而造成成功与失败之间的天壤之别。

在SIR模型中,我们推导出了两个关键阈值,即R0和疫苗接种阈值。这两个阈值都是属于敏感依赖于环境的临界点,环境(情境)中的微小变化都会对结果产生很大的影响。这种临界点不同于直接临界点(direct tippingpoint)。在直接临界点,特定时刻的微小行动会永久性地改变系统的路径。而在依赖于环境的临界点上,参数的变化会改变系统的行为方式。