2006上海高考数学试题答案理科

上海数学(理工农医类)参考答案

一、(第1题至笫12题)

1. 1 2. 3. 4. 5. -1+i 6. 7.

8. 5 9. 10. 36 11. k=0,-1<b<1 12. a≤10

二、(第13题至笫16题)

13. C 14. A 15. A 16. D

三、(第17题至笫22题)

17.解:y=cos(x+ ) cos(x- )+ sin2x

=cos2x+ sin2x=2sin(2x+ )

∴函数y=cos(x+ ) cos(x- )+ sin2x的值域是[-2,2],最小正周期是π.

18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.

于是,BC=10 .

∵ , ∴sin∠ACB= ,

∵∠ACB<90° ∴∠ACB=41°

∴乙船应朝北偏东71°方向沿直线前往B处救援.

19.解:(1) 在四棱锥P-ABCD中,由PO⊥平面ABCD,得

∠PBO是PB与平面ABCD所成的角, ∠PBO=60°.

在Rt△AOB中BO=ABsin30°=1, 由PO⊥BO,

于是,PO=BOtg60°= ,而底面菱形的面积为2 .

∴四棱锥P-ABCD的体积V= ×2 × =2.

(2)解法一:以O为坐标原点,射线OB、OC、OP分别为x轴、y轴、z轴的正半轴建立空间直角坐标系.

在Rt△AOB中OA= ,于是,点A、B、D、P的坐标分别是A(0,- ,0),

B(1,0,0),D(-1,0,0)P(0,0, ).

E是PB的中点,则E( ,0, ) 于是 =( ,0, ), =(0, , ).

设 的夹角为θ,有cosθ= ,θ=arccos ,

∴异面直线DE与PA所成角的大小是arccos .

解法二:取AB的中点F,连接EF、DF.

由E是PB的中点,得EF‖PA,

∴∠FED是异面直线DE与PA所成角(或它的补角).

在Rt△AOB中AO=ABcos30°= =OP,

于是, 在等腰Rt△POA中,PA= ,则EF= .

在正△ABD和正△PBD中,DE=DF= .

cos∠FED= =

∴异面直线DE与PA所成角的大小是arccos .

20.证明:(1)设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x12,y2).

当直线l的钭率下存在时,直线l的方程为x=3,此时,直线l与抛物线相交于点A(3, )、B(3,- ).∴ =3

当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0.

当 y2=2x

得ky2-2y-6k=0,则y1y2=-6.

y=k(x-3)

又∵x1= y , x2= y ,

∴ =x1x2+y1y2= =3.

综上所述, 命题“如果直线l过点T(3,0),那么 =3”是真命题.

(2)逆命题是:设直线l交抛物线y2=2x于A、B两点,如果 =3,那么该直线过点T(3,0).该命题是假命题.

例如:取抛物线上的点A(2,2),B( ,1),此时 =3,

直线AB的方程为Y= (X+1),而T(3,0)不在直线AB上.

说明:由抛物线y2=2x上的点A(x1,y1)、B(x12,y2)满足 =3,可得y1y2=-6.

或y1y2=2,如果y1y2=-6.,可证得直线AB过点(3,0);如果y1y2=2, 可证得直线AB过点(-1,0),而不过点(3,0).

21.证明(1)当n=1时,a2=2a,则 =a;

2≤n≤2k-1时, an+1=(a-1) Sn+2, an=(a-1) Sn-1+2,

an+1-an=(a-1) an, ∴ =a, ∴数列{an}是等比数列.

解(2)由(1)得an=2a , ∴a1a2…an=2 a =2 a =a ,

bn= (n=1,2,…,2k).

(3)设bn≤ ,解得n≤k+ ,又n是正整数,于是当n≤k时, bn< ;

当n≥k+1时, bn> .

原式=( -b1)+( -b2)+…+( -bk)+(bk+1- )+…+(b2k- )

=(bk+1+…+b2k)-(b1+…+bk)

= = .

当 ≤4,得k2-8k+4≤0, 4-2 ≤k≤4+2 ,又k≥2,

∴当k=2,3,4,5,6,7时,原不等式成立.

22.解(1) 函数y=x+ (x>0)的最小值是2 ,则2 =6, ∴b=log29.

(2)设0<x1<x2,y2-y1= .

当 <x1<x2时, y2>y1, 函数y= 在[ ,+∞)上是增函数;

当0<x1<x2< 时y2<y1, 函数y= 在(0, ]上是减函数.

又y= 是偶函数,于是,该函数在(-∞,- ]上是减函数, 在[- ,0)上是增函数.

(3)可以把函数推广为y= (常数a>0),其中n是正整数.

当n是奇数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,

在(-∞,- ]上是增函数, 在[- ,0)上是减函数.

当n是偶数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,

在(-∞,- ]上是减函数, 在[- ,0)上是增函数.

F(x)= +

=

因此F(x) 在 [ ,1]上是减函数,在[1,2]上是增函数.

所以,当x= 或x=2时, F(x)取得最大值( )n+( )n;

当x=1时F(x)取得最小值2n+1.

图画不到。