这句古语怎么解释
在我国,这个定理的叙述最早见于《周髀算经 》(大约成书于公元前一世纪前的西汉时期),书中有一段商高(约前1120)答周公问中有「勾广三 ,股修四,经隅五」的话,意即直角三角形的两条直角边是3及4、则斜边是5。书中还记载了陈子( 前716)答荣方问∶「若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之、得邪至 日」,古汉语中邪作斜解,因此这一句话明确陈述了勾股定理的内容。至三国的赵爽(约3世纪), 在他的数学文献《勾股圆方图》中(作为《周髀算经》的注文,而被保留于该书之中)。运用弦图, 巧妙的证明了勾股定理,如图2。他把三角形涂成红色,其面积叫「朱实」,中间正方形涂成黄色叫 做「中黄实」,也叫「差实」。他写道∶「按弦图,又可勾股相乘为朱实二,倍之为朱实四,以勾股 之差相乘为中黄实,加差实,亦称弦实」。若用现在的符号,分别用a、b、c记勾、股、弦之长,赵 爽所述即
2ab+(a-b)2=c2,
化简之得a2+b2=c2。