求导公式表
求导公式表如下:
1、C'=0(C为常数)。
2、(Xn)'=nX(n-1)(n∈R)。
3、(sinX)'=cosX。
4、(cosX)'=-sinX。
5、(aX)'=aXIna(ln为自然对数)。
6、(logaX)'=(1/X)logae=1/(Xlna)(a>0,且a≠1)。
7、(tanX)'=1/(cosX)2=(secX)2。
8、(cotX)'=-1/(sinX)2=-(cscX)2。
9、(secX)'=tanX secX。
求导注意事项
1、函数在一点处可导与可微是等价的,可以推出在这一点处是连续的,反过来则是不成立的。
2、复合函数要会写出它的复合过程,按照复合函数的求导法则一次求导就可以了,也是通过这个复合函数求导法则可求出很多函数的导数。
3、导数存在的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。