求导公式表

求导公式表如下:

1、C'=0(C为常数)。

2、(Xn)'=nX(n-1)(n∈R)。

3、(sinX)'=cosX。

4、(cosX)'=-sinX。

5、(aX)'=aXIna(ln为自然对数)。

6、(logaX)'=(1/X)logae=1/(Xlna)(a>0,且a≠1)。

7、(tanX)'=1/(cosX)2=(secX)2。

8、(cotX)'=-1/(sinX)2=-(cscX)2。

9、(secX)'=tanX secX。

求导注意事项

1、函数在一点处可导与可微是等价的,可以推出在这一点处是连续的,反过来则是不成立的。

2、复合函数要会写出它的复合过程,按照复合函数的求导法则一次求导就可以了,也是通过这个复合函数求导法则可求出很多函数的导数。

3、导数存在的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。