muc1粘蛋白的MUC1的分子生物学和生物化学
MUC1又名PEM(polymorphic epithelial mucin), PUM(peanut lectin binding urinary mucins), DF3, MAM-6, CA 15-3等, 其不同的命名是由于对其分离和检测的方法等的不同而来, 其cDNA克隆是通过筛选从乳腺癌、胰腺癌等细胞系构建的cDNA表达文库而得到的。人MUC1基因定位于染色体1q21, 含有7个外显子。MUC1基因的一个重要特征是其多态性(polymorphism), 即其第2个外显子中含有许多连续重复序列(variable number of tandem repeats, VNTRs),每个VNTR含有60个碱基, 富含GC, 不同人的VNTRs数量从20~125不等,最常见的2个等位基因分别含有41和85个VNTRs, 同一个体的不同等位基因其VNTRs的数量也可能不同, 而小鼠的MUC1基因无此多态性。MUC1的这一特征表明它是一种典型的小卫星序列(minisatellite sequence)。近期研究结果推测, 小卫星重复单位数量的变化主要是由种系复合基因转变事件造成的。
不同种属的MUC1基因的差别主要表现在VNTRs的组成不同,但某些区域的组成却是保守的, 如人和小鼠(MUC1)基因的比较研究表明, 转录起始位点上游500 bp内的转录起始区, 特别是TATA盒上游区域结构是高度保守的, 这可能与MUC1在上皮性细胞中的特异性表达有关。 MUC1基因的编码产物MUC1粘蛋白是一种高分子量糖蛋白(>200 kD), 其基本特征:① 糖链占整个粘蛋白含量的50%以上, 且多以O-糖苷键与多肽骨架上的Ser/Thr相连; ② 多肽骨架中含有PTS区, 即富含Pro(P),Thr(T)和Ser(S)3种氨基酸的区域, 这3种氨基酸占整个肽链氨基酸含量的20%~55%,此区内含有许多连续重复肽链序列, 所有的O-糖基化位点均位于这些序列中。
MUC1的多肽骨架由胞外段、跨膜段和胞内段3部分组成, 跨膜段和胞内段(含72个氨基酸),在不同种间其结构是高度保守的, 表明它们在MUC1的功能发挥上可能起重要作用; 胞外段含有20~125个连续重复序列, 每个重复序列含有20个氨基酸, 即PDTRPAPGSTAPPAHGVTSA, 其中S,T,A,G,P 5种氨基酸占50%以上, P对MUC1空间结构的形成从而对其免疫原性的决定起重要作用。不同个体间连续重复序列数量的不同是由MUC1基因的多态性所决定的, 因此,胞外段长短可从400~2 500氨基酸不等, 每个连续重复序列中含有5个潜在的O-糖基化位点, 其中的4个可发生O-糖基化反应, S,T相邻是糖基化的必要条件。
糖链多以O型糖苷键与多肽骨架连接。每条糖链含有1~20个单糖,以GalNAc(15.0%), GluNAc (19.8%), Gal(44.9%),Fuc(8.9%)和SA(11.4%)最为常见,由核心区、骨架区和外周区组成。核心区是指与多肽骨架上的Ser/Thr相连的GalNAc及直接与GalNAc相连的糖链部分; 骨架区分为Ⅰ型(Galα-3GlcNAc)和Ⅱ型(Galα-4GlcNAc1-3)2种, Ⅰ型结构一般单个存在, 而Ⅱ型可多个同时存在; 外周区是指骨架区末端以α-糖苷键连接的Gal, GalNAc, Fuc, SA及硫酸基, 这些基团在决定MUC1的生化特性(如电荷等)和功能方面起重要作用。末端糖基的加入对糖链的延伸起终止作用, 同时也产生了某些糖链表位, 如血型抗原A, B和H, Lea和Leb, X, Y及Cd抗原决定簇。由于含28个氨基酸的肽链O-糖基化后长度为7 nm, 因此, MUC1胞外段的长度约为240~630 nm, 是细胞表面最先与机体免疫系统接触的膜表面分子之一。 研究表明,MUC1基因的表达主要在转录水平进行调控。这种调控作用是通过MUC1启动子上的顺式作用元件和细胞中的转录因子间的相互作用来实现的。MUC1的启动子序列约2.9 kb,其中,发挥调控作用的顺式作用元件主要位于5′开放区743 bp的序列范围内。MUC1启动子含有2个Sp1结合位点(GGGGC GGGG),分别位于-576/-568和-99/-90,另外,- 101/
-89处有1个SpA结合位点(AGGGGCGGGGTT),-84/-64有1个E-box(E-MUC1)。Sp1与其结合位点的相互作用可促进MUC1基因的表达,而SpA则下调其表达。Sp1和SpA的比例可能是决定MUC1基因表达水平的一个重要因素。肿瘤细胞MUC1的高水平表达,可能与二者之间的调控失调有关。Sp1位点与E-box(E-MUC1)可能与MUC1的组织特异性表达有关。最新分析表明,MUC1启动子中含有乳腺特异性、造血细胞特异性、B细胞特异性、T细胞特异性、肝细胞特异性、肌细胞特异性顺式作用元件,这与最近报道的MUC1在除上皮组织外的多种组织和细胞中表达是一致的,MUC1启动子含有多样性的顺式作用元件,是目前已知真核启动子中比较独特的一种。对其结构及其与转录因子间相互作用的研究,对于阐明MUC1基因在肿瘤发生、发展中的作用并为肿瘤治疗提供新的线索具有重要意义。
对于MUC1基因转录后的选择性剪切而形成不同同种型的机制,目前还不清楚。由于MUC1/Y具有肿瘤特异性表达的特点,因此,这种选择性剪切可能与细胞的癌变有一定的关系。 目前的研究表明,MUC1即可诱发抗鬃瘤的CTL免疫应答(MHC限制性和非MHC限制性),同时又可抑制免疫活性细胞对肿瘤的杀伤作用,高水平的MUC1表达与肿瘤患者的预后呈负相关,提示MUC1可能参与免疫应答的调节。
Finn的研究小组首先发现在乳腺癌、卵巢癌、胰腺癌患者体内存在可杀伤肿瘤细胞的CTL,其特点为非MHC限制性。随后他们又在乳腺癌患者中发现了具有MHCⅠ限制性的识别MUC1表位的CTL。这些现象也在小鼠体内得到了进一步的验证。正是上述发现使MUC1成为一种肿瘤生物治疗的靶分子。 如上所述, MUC1在癌变时可发生量和质的改变, 出现新的抗原表位, 同时, 由于MUC1是最先与机体免疫系统接触的细胞表面分子之一,肿瘤MUC1可以非MHC限制性和MHC限制性方式活化CTLs,这些活化的CTLs可杀伤表达MUC1的肿瘤细胞。因此, MUC1是肿瘤主动特异性免疫治疗(active specific immunotherapy)理想的靶分子。
目前, 有多种基于MUC1的免疫原作为疫苗用于肿瘤治疗的研究, 有些已经进入临床实验阶段。 自MUC1发现以来,已有多家研究机构制备了多种MUC1单克隆抗体,其中56株已得到国际肿瘤生物医学协会(ISOBM)的确认(见表1),这些抗体中的大多
表1 ISOBM确认的MUC1单克隆抗体
ISOBM编号 单抗名称 研制单位 研究者 同种型
ISOBM-122 Ma 552 CanAg Nilsson, O. IgG1
ISOBM-123 BC3 Austin Research Institute McKenzie I. IgM
ISOBM-124 HMPV Austin Research Institute McKenzie I. IgM
ISOBM-125 VU- 3-C6 Univ. Hosp. “Vrije Universiteit” Hilgers, J. IgG1
ISOBM-126 VU-12-E1 Univ. Hosp. “Vrije Universiteit” Hilgers, J. IgG1
ISOBM-127 SH1 University of Copenhagen Clausen, H. IgG3-k
ISOBM-128 DH-1 Austin Research Institute McKenzie I. IgM
ISOBM-129 MF06 C.I.S. Biointernational Seguin, P. IgG1
ISOBM-130 VU-11-D1 Univ. Hosp. “Vrije Universiteit” Hilgers, J. IgG1
ISOBM-131 VA1 Austin Research Institute McKenzie I. IgG1
ISOBM-132 MF30 C.I.S. Biointernational Seguin, P. IgG1
ISOBM-133 BCP 8 Austin Research Institute McKenzie I. IgG2b
ISOBM-134 BW 835 Behringwerke AG Schelp, C. IgG1
ISOBM-135 SMA-1 Austin Research Institute McKenzie I. IgM
ISOBM-136 DF3 Centocor Cornillie, F. IgG1
ISOBM-137 27.1 Austin Research Institute McKenzie I. IgG1
ISOBM-138 BC2 Austin Research Institute McKenzie I. IgG1
ISOBM-139 B27.29 Biomira Inc. Craig, D. IgG1
ISOBM-140 VU- 3-D1 Univ. Hosp. “Vrije Universiteit” Hilgers, J. IgG1
ISOBM-141 BCP 7 Austin Research Institute McKenzie I. IgG2a
ISOBM-142 7540MR Bayer Yeung, K. IgG1
ISOBM-143 M26 Sanofi IgM+G1-k
ISOBM-144 VU- 4-H5 Univ. Hosp. “Vrije Universiteit” Hilgers, J. IgG1
ISOBM-145 3E1.2 Austin Research Institute McKenzie I. IgM
ISOBM-146 232A1 Netherlands Cancer Institute Hilkens, J. IgG1
ISOBM-147 BCP 9 Austin Research Institute McKenzie I. IgG1
ISOBM-148 115 D8 Centocor Cornillie, F. IgG2b-k
ISOBM-149 MF11 C.I.S. Biointernational Seguin, P. IgG1
ISOBM-150 KC4 Immunotech SA Agthoven, A. Van IgG3
ISOBM-151 5F4 University of Copenhagen Clausen, H. IgM
ISOBM-152 M29 Sanofi IgG1-k
ISOBM-153 BC4E549 Hybritech Inc. Rittenhouse, H. IgG1-k
ISOBM-154 Ma 695 CanAg Nilsson, O. IgG1
ISOBM-155 Sec1 Austin Research Institute McKenzie I. IgG2b
ISOBM-156 VU-11-E2 Univ. Hosp. “Vrije Universiteit” Hilgers, J. IgG1
ISOBM-157 HH 6 University of Copenhagen Clausen, H. IgG3-k
ISOBM-158 M38 Sanofi IgG1-k
ISOBM-159 E29 Dako A/S Askaa, J. IgG2a
ISOBM-160 HH14 University of Copenhagen Clausen, H. IgM
ISOBM-161 GP1.4 Immunotech SA Agthoven, A. van IgG1
ISOBM-162 214D4 Netherlands Cancer Institute Hilkens, J. IgG1
ISOBM-163 43 Austin Research Institute McKenzie I. IgM
ISOBM-164 CC2 Austin Research Institute McKenzie I. IgM
ISOBM-165 SM3 Imperial Cancer Research Fund Burchell, J. IgG1
ISOBM-166 12C10 Transgene SA Acres, B. IgG1-k
ISOBM-167 FH6 University of Copenhagen Clausen, H. IgM
ISOBM-168 BC5N154 Hybritech Inc. Rittenhouse, H. IgM
ISOBM-169 HMFG-1 Imperial Cancer Research Fund Burchell, J. IgG1
ISOBM-170 VA2 Austin Research Institute McKenzie I. IgG1
ISOBM-171 B12 Roche Diagnostic Systems Pfleiderer, P. IgG1
ISOBM-172 C595 University of Nothingham Price, M. IgG3
ISOBM-173 BCRU-G7 Norwegian Radium Hospital Rye, P. IgM
ISOBM-174 BCP10 Austin Research Institute McKenzie I. IgM
ISOBM-175 MC5 Immunotech SA Agthoven, A. van IgG1-k
ISOBM-176 7539MR Bayer Yeung, K. IgG2b
ISOBM-177 A76-A/C7 Max Delbrueck Centre f. Mol.Med. Karsten, U. IgG1+M-k
数的识别表位位于MUC1 VNTRs中的APDTRPAPG区域,如BC2识别APDTR,HMFG1识别PDTR等。由于MUC1在肿瘤细胞表面的高度异常表达,使其成为一种潜在的肿瘤靶向治疗的靶分子。目前已有多个实验室在利用MUC1单抗进行肿瘤治疗的研究。