一直F1,F2,是椭圆a方分之x方+b方分之y方=1的左右焦点,过F1的直线与椭圆相交与A

画图,由条件可知AB⊥AF2,且AB=AF2.

不妨设AB=AF2=m,则BF2=√2m。

又因为A、B在椭圆上,所以△ABF2的周长值为4a,且4a=m+m+√2m=m(2+√2)

所以a=(2+√2)m/4。

因为AF1+AF2=2a,AF2=m,所以可算出AF1=2a-m=√2m/2

勾股定理,得F1F2=√6m/2。

所以e=c/a=2c/2a=F1F2/AF1+AF2=[√6m/2]/[m+√2m/2]=√6-√3.

望采纳。>3<。