RGB 最好的混光比例是什么

第二章 色彩的物理理论

第二节: 色彩的混合

一 色光加色法

(一)、色光三原色的确定

三原色的本质是三原色具有独立性,三原色中任何一色都不能用其余两种色彩合成。另外,三原色具有最大的混合色域,其它色彩可由三原色按一定的比例混合出来,并且混合后得到的颜色数目最多。

在色彩感觉形成的过程中,光源色与光源、眼睛和大脑三个要素有关,因此对于色光三原色的选择,涉及到光源的波长及能量、人眼的光谱响应区间等因素。

从能量的观点来看,色光混合是亮度的叠加,混合后的色光必然要亮于混合前的各个色光,只有明亮度低的色光作为原色才能混合出数目比较多的色彩,否则,用明亮度高的色光作为原色,其相加则更亮,这样就永远不能混合出那些明亮度低的色光。同时,三原色应具有独立性,三原色不能集中在可见光光谱的某一段区域内,否则,不仅不能混合出其它区域的色光,而且所选的原色也可能由其它两色混合得到,失去其独立性,而不是真正的原色。

在白光的色散试验中,我们可以观察到红、绿、蓝三色比较均匀地分布在整个可见光谱上,而且占据较宽的区域。如果适当地转动三棱镜,使光谱有宽变窄,就会发现:其中色光所占据的区域有所改变。在变窄的光谱上,红(R)、绿(G)、蓝(B)三色

光的颜色最显著,其余色光颜色逐渐减退,有的差不多已消失。得到的这三种色光的波长范围分别为:R(600~700nm),G(500~570nm),B(400~470nm)。在色彩学中,一般将整个可见光谱分成蓝光区,绿光区和红光区进行研究。

当用红光、绿光、蓝光三色光进行混合时,可分别得到黄光、青光和品红光。品红光是光谱上没有的,我们称之为谱外色。如果我们将此三色光等比例混合,可得到白光;而将此三色光以不同比例混合,就可得到多种不同色光。

从人的视觉生理特性来看,人眼的视网膜上有三种感色视锥细胞--感红细胞、感绿细胞、感蓝细胞,这三种细胞分别对红光、绿光、蓝光敏感。当其中一种感色细胞受到较强的刺激,就会引起该感色细胞的兴奋,则产生该色彩的感觉。人眼的三种感色细胞,具有合色的能力。当一复色光刺激人眼时,人眼感色细胞可将其分解为红、绿、蓝三种单色光,然后混合成一种颜色。正是由于这种合色能力,我们才能识别除红、绿、蓝三色之外的更大范围的颜色。

综上所述,我们可以确定:色光中存在三种最基本的色光,它们的颜色分别为红色、绿色和蓝色。这三种色光既是白光分解后得到的主要色光,又是混合色光的主要成分,并且能与人眼视网膜细胞的光谱响应区间相匹配,符合人眼的视觉生理效应。这三种色光以不同比例混合,几乎可以得到自然界中的一切色光,混合色域最大;而且这三种色光具有独立性,其中一种原色不能由另外的原色光混合而成,由此,我们称红、绿、蓝为色光三原色。为了统一认识,1931年国际照明委员会(CIE)规定了三原色的波长λR=700.0nm,λG=546.1nm,λB=435.8nm。在色彩学研究中,为了便于定性分析,常将白光看成是由红、绿、蓝三原色等量相加而合成的。

(二)色光加色法

由两种或两种以上的色光相混合时,会同时或者在极短的时间内连续刺激人的视觉器官,使人产生一种新的色彩感觉。我们称这种色光混合为加色混合。这种由两种以上色光相混合,呈现另一种色光的方法,称为色光加色法。

国际照明委员会(CIE)进行颜色匹配试验表明:当红、绿、蓝三原色的亮度比例为1.0000:4.5907:0.0601时,就能匹配出中性色的等能白光,尽管这时三原色的亮度值并不相等,但CIE却把每一原色的亮度值作为一个单位看待,所以色光加色法中红、绿、蓝三原色光等比例混合得到白光。其表达式为(R)+(G)+(B)=(W)。红光和绿光等比例混合得到黄光,即(R)+(G)=(Y);红光和蓝光等比例混合得到品红光,即(R)+(B)=(M);绿光和蓝光等比例混合得到青光,即(B)+(G)=(C),如图2-7所示。如果不等比例混合,则会得到更加丰富的混合效果,如:黄绿、蓝紫、青蓝等。

图2-7加色混色图

从色光混合的能量角度分析,色光加色法的混色方程为:

式中:C为混合色光总量;(R)、(G)、(B)为三原色的单位量;a、b、g为三原色分量系数。此混色方程十分明确地表达了复色光中的三原色成分。

从人眼对色光物理刺激的生理反应角度分析,色光加色混合的数学形式为:

式中:C 为混合色觉;为光谱三刺激值 。

自然界和现实生活中,存在很多色光混合加色现象。例如太阳初升或将落时,一部分色光被较厚的大气层反射到太空中,一部分色光穿透大气层到地面,由于云层厚度及位置不同,人们有时可以看到透射的色光,有时可以看到部分透射和反射的混合色光,使天空出现了丰富的色彩变化。

(三)加色法实质

加色法是色光与色光混合生成新色光的呈色方法。参加混合的每一种色光都具有一定的能量,这些具有不同能量的色光混合时,可以导致混合色光能量的变化。

色光直接混合时产生新色光的能量是参加混合的各色光的能量之和。如图2-8所示,照射面积相同的两种色光--红光与绿光混合,混合后的面积依然与混合前单色光的面积相同,但光的能量却增大了,所以导致了混合后色光亮度的增加。

(四)加色混合种类

色光混合的实现方法主要分为两类:一类是视觉器官外的混合,另一类是视觉器官内的混合。

1、视觉器官外的加色混合

视觉器官外的加色混合是指色光在进入人眼之前就已经混合成新的色光。色光的直接匹配就是视觉器官外的加色混合。光谱上各种单色光形成白光,是最典型的视觉器官外的加色混合这种加色混合的特点是:在进入人眼之前各色光的能量就已经叠加在一起,混合色光中的各原色光对人眼的刺激是同时开始的,是色光的同时混合。

2、视觉器官内的加色混合

视觉器官内的加色混合是指参加混合的各单色光,分别刺激人眼的三种感色细胞,使人产生新的综合色彩感觉,它包括静态混合与动态混合。

(1)静态混合

静态混合是指各种颜色处于静态时,反射的色光同时刺激人眼而产生的混合,如细小色点的并列与各单色细线的纵横交错,所形成的颜色混合,均属静态混合,各色反射光是同时刺激人眼的,也是色光的同时混合。细小色点并列的加色混合如图2-9 a及彩图2-9 b所示。

由于视锐度所限,人们不能将相隔太近,且面积又很小的色点或色线分辨开来,而将它们视为一种混合色。图2-9a是黄色点与青色点并列时的放大图,黄色与青色的反射光同时刺激人眼的感色细胞,使人产生的色彩感觉既不是单纯的黄色,也不是单纯的青色,而是青色与黄色的混合色--绿色,这是由于色点相距太近,人眼的感色细胞无法区分开,从而产生了综合色觉。

图2-9 a色光的静态混合 彩图2-9 b 空混构成

(2)动态混合

动态混合是指各种颜色处于动态时,反射的色光在人眼中的混合,如彩色转盘的快速转动,各种色块的反射光不是同时在人眼中出现,而是一种色光消失,另一种色光出现,先后交替刺激人眼的感色细胞,由于人眼的视觉暂留现象,使人产生混合色觉。

人眼之所以能够看清一个物体,乃是由于该物体在光的照射下,物体所反射或透射的光进入人眼,刺激了视神经,引起了视觉反应。当这个物体从眼前移开,对人眼的刺激作用消失时,该物体的形状和颜色不会随着物体移开而立即消失,它在人眼还可以作一个短暂停留,时间大约为1/10秒。物体形状及颜色在人眼中这个短暂时间的停留,就称为视觉暂留现象。正因为有了这种视觉暂留现象,人们才能欣赏到电影、电视的连续画面。视觉暂留现象是视错觉的一种表现。

人眼的视觉暂留现象是色光动态混合呈色的生理基础,如图2-10所示的彩色转盘。

在转盘上以1:1的比例间隔均匀地涂上红、绿两种颜色。快速转动转盘,可以看到转盘上已不再是红、绿两种颜色,而是一个黄色。这是因为:当转盘快速转动时,如果红色反射光进入人眼,就会刺激感红细胞。当红色转过,绿色反射光进入人眼,就刺激了感绿细胞。此时,感红细胞所受刺激并没有消失,它继续停留1/10秒地时间。在这个瞬间,感红细胞与感绿细胞同时兴奋,就产生了综合的黄色感觉。彩色转盘转动地越快,这种混合就越彻底。

动态混合是由参加混合的色光先后交替连续刺激人眼,因此又称为色光的先后混合。

图2-10 色光动态混合

通常情况下,人眼可以正确地观察及判断外界事物的状态,如大小、形状、颜色等,但如果商品包装的颜色分布太杂,颜色面积太小或多种颜色的交替速度过快,人眼的分辨能力则受到影响,就会使所观察到的颜色与实际有所差别。

(五)色光混合规律

1、色光连续变化规律

由两种色光组成的混合色中,如果一种色光连续变化,混合色的外貌也连续变化。可以通过色光的不等量混合实验观察到这种混合色的连续变化。红光与绿光混合形成黄光,若绿光不变,改变红光的强度使其逐渐减弱,可以看到混合色由黄变绿的各种过渡色彩,反之,若红光不变,改变绿光的强度使其逐渐减弱,可以看到混合色由黄变红的各种过渡色彩。

2、补色律

在色光混合实验中可以看到:三原色光等量混合,可以得到白光。如果先将红光与绿光混合得到黄光,黄光再与蓝光混合,也可以得到白光。白光还可以由另外一些色光混合得到。如果两种色光混合后得到白光,这两种色光称为互补色光,这两种颜色称为补色。

补色混合具有以下规律:每一个色光都有一个相应的补色光,某一色光与其补色光以适当比例混合,便产生白光,最基本的互补色有三对:红-青,绿-品红,蓝-黄。

补色的一个重要性质:一种色光照射到其补色的物体上,则被吸收。如用蓝光照射黄色物体,则呈现黑色。如图2-11 所示。

图2-11 物体对补色光的吸收

利用这个道理,我们可以用某一色光的补色控制这一色光。如果控制绿色,可以通过调节品红颜料层的浓度来控制其反射(透射)率,以达到合适的强度。

3、中间色律

中间色律的主要内容是:任何两种非补色光混合,便产生中间色。其颜色取决于两种色光的相对能量,其鲜艳程度取决于二者在色相顺序上的远近。

任何两种非补色光混合,便产生中间色最典型的实例是三原色光两两等比例混合,可以得到它们的中间色:(R) + (G)= ( Y);(G) + (B)= ( C);(R)+ (B)= ( M)。其它非补色混合,都可以产生中间色。颜色环上的橙红光与青绿光混合,产生的中间色的位置在橙红光与青绿光的连线上。其颜色由橙红光与青绿光的能量决定:若橙红光的强度大,则中间色偏橙,反之则偏青绿色。 其鲜艳程度由相混合的两色光在颜色环上的位置决定:此两色光距离愈近,产生的中间色愈靠近颜色环边线,就愈接近光谱色,因此,就愈鲜艳;反之,产生的中间色靠近中心白光,其鲜艳程度下降。

4、代替律

颜色外貌相同的光,不管它们的光谱成份是否一样在色光混合中都具有相同的效果。凡是在视觉上相同的颜色都是等效的。即相似色混合后仍相似。

如果颜色光A=B、 C=D,那么: A+C=B+D

色光混合的代替规律表明:只要在感觉上颜色是相似的便可以相互代替,所得的视觉效果是同样的。设A+B=C,如果没有直接色光B,而X+Y=B,那么根据代替律,可以由A+X+Y=C来实现C。由代替律产生的混合色光与原来的混合色光在视觉上具有相同的效果。

色光混合的代替律是非常重要的规律。根据代替律,可以利用色光相加的方法产生或代替各种所需要的色光。色光的代替律,更加明确了同色异谱色的应用意义。

5、亮度相加律

由几种色光混合组成的混合色的总亮度等于组成混合色的各种色光亮度的总和。这一定律叫作色光的亮度相加律。色光的亮度相加规律,体现了色光混合时的能量叠加关系,反映了色光加色法的实质。

以上五个规律是色光混合的基本规律。从这些规律中可以看出:以各种比例的三原色光相混合,可以产生自然界中的各种色彩。熟悉了色光混合的基本规律,就可以大体知道一个比较复杂的色光,是由那几个原色光组成的,或者几个比较单纯的色光混合起来,会形成什么样的色光。这对于我们在包装色彩的设计和彩色原稿的分析中,都有着十分重要的意义。

二 色料减色法

〈一〉 色料三原色

在光的照耀下,各种物体都具有不同的颜色。其中很多物体的颜色是经过色料的涂、染而具有的。凡是涂染后能够使无色的物体呈色、有色物体改变颜色的物质,均称为色料。色料可以是有机物质,也可以是无机物质。色料有染料与颜料之分。

色料和色光是截然不同的物质,但是它们都具有众多的颜色。在色光中,确定了红、绿、蓝三色光为最基本的原色光。在众多的色料中,是否也存在几种最基本的原色料,它们不能由其它色料混合而成,却能调制出其它各种色料?通过色料混合实验,人们发现:采用与色光三原色相同的红、绿、蓝三种色料混合,其混色色域范围不如色光混合那样宽广。红、绿、蓝任意两种色料等量混合,均能吸收绝大部分的辐射光而呈现具有某种色彩倾向的深色或黑色。从能量观点来看,色料混合,光能量减少,混合后的颜色必然暗于混合前的颜色。因此,明度低的色料调配不出明亮的颜色,只有明度高的色料作为原色才能混合出数目较多的颜色,得到较大的色域。

从色料混合实验中,人们发现,能透过(或反射)光谱较宽波长范围的色料青、品红、黄三色,能匹配出更多的色彩。在此实验基础上,人们进一步明确:由青、品红、黄三色料以不同比例相混合,得到的色域最大,而这三色料本身,却不能用其余两种原色料混合而成。因此,我们称青、品红、黄三色为色料的三原色。

需要说明的是,在包装色彩设计和色彩复制中,有时会将色料三原色称为红、黄、蓝,而这里的红是指品红(洋红),而蓝是指青色(湖蓝)。

〈二〉 色料减色法及其实质

颜色是物体的化学结构所固有的光学特性。一切物体呈色都是通过对光的客观反映而实现的。所谓"减色",是指加入一种原色色料就会减去入射光中的一种原色色光(补色光)。因此,在色料混合时,从复色光中减去一种或几种单色光,呈现另一种颜色的方法称为减色法。

a b

图2-12

我们以色光照射理想滤色片为例来说明。当一束白光照射品红滤色片的情况,如图2-12a所示。根据补色的性质,品红滤色片吸收了R、G、B三色中G,而将剩余R和B透射出来,从而呈现了品红色。图2-12b为青和品红二原色色料等比例叠加的情况,当白光照射青、品红滤色片时,青滤色片吸收了R,品红滤色片吸收了G,最后只剩下了B,也就是说,青色和品红色色料等比例混合呈现出蓝色,表达式为:(C)+(M)=(B)。同样,青、黄二原色色料等比例混合得到绿色,即(C)+(Y)=(G);品红、黄二原色色料等量混合得到红色,即(M)+(Y)=(R);而青、品红、黄三种原色色料等比例混合就得到黑色,即(C)+(M)+(Y)=(Bk)。三原色料等比例混合可由图2-13表示。

图2-13 减色混色图

青、品红、黄是色料中用来配制其它颜色的最基本的颜色,称之为原色或第一次色。间色是由两种原色料混合而得到的,称为第二次色。对于红色色料可以认为是黄色色料和品红色料的混合,即(R)=(M)+(Y);同理,绿色色料有(G)=(C)+(Y);蓝色色料有(B)=(C)+(M)。这样在对间色呈色原理进行分析时,色料的间色就可以用原色来表示。复色是由三种原色料混合而得到的颜色。

色料的呈色是由于色料选择性地吸收了入射光中的补色成分,而将剩余的色光反射或透射到人眼中。减色法的实质是色料对复色光中的某一单色光的选择性吸收,而使入射光的能量减弱。由于色光能量下降,使混合色的明度降低。

(三)色料混合变化规律

1、三种原色的混合

三种原色料等比例混合,可以得到黑色,即:

式中,表示色料混合后反射(透射)出的色光。

三种原色料不等量混合时,可以得到复色,其一般形式为:

式中:C减为混合色料;(Y)、(M)、(C)为色料三原色的单位量;a、b、g为三原色料份量系数。

通过混色方程,可以了解各种混合色中三原色料的比例关系,为正确调制颜料提供依据。

2、原色与间色混合

(1)互补色料

三原色料等比例混合可以得到黑色,即:(Y)+(M)+(C)=(Bk)。若先将黄色与品红色混合得到其间色红色,然后再与青色混合,上式可以写成:(R)+(C)=(Bk)。

象这样两种色料相混合成为黑色,我们称这两种色料为互补色料,这两种颜色称为互补色。其意义在于给青色补充一个红色可以得到黑色;反之,给红色补充一个青色亦成为黑色。除了红、青两色是一对互补色外,在色料中,品红与绿,黄与蓝也各是一对互补色。

由于三原色比例的多种变化,构成补色关系的颜色有很多并不仅限于以上几对,只要两种色料混合后形成黑色,就是一对互补色料。任何色料都有其对应的补色料。

色料混合中,补色的应用是十分广泛的。如在绘画中,画面上某处色彩需要加暗时,并不一定要使用黑色,只要在该处涂以原色彩的补色即可。彩色印刷过程中,调用专用墨色时,应特别注意补色的使用。当调用较鲜艳的浅色时,如不恰当地加入了补色,则会使墨色变得灰暗。

(2) 间色与其非互补色的原色混合

间色与其互补色色料混合呈现黑色,而间色与非互补色的原色色料混合呈色现象则较为复杂。为了更好地解释这一现象,假设1个单位厚度的原色色料能将1个单位的补色光完全吸收。以理想的红滤色片和黄滤色片叠合为例,当1个单位的白光入射时,呈色过程如图2-14所示,表达式如下:

① 1个单位厚的红滤色片和1个单位厚的黄滤色片叠合:

{(Y)+(M)}+(Y)=2(Y)+(M)T(R) 红色

② 1/2个单位厚的红滤色片和1/2个单位厚的黄滤色片叠合:

{1/2(Y)+1/2(M)}+1/2(Y)=(Y)+1/2(M)T1/2(R)+1/2(Y) 红黄

③ 1/4个单位厚的红滤色片和1/4个单位厚的黄滤色片叠合:

{1/4(Y)+1/4(M)}+1/4(Y)=1/2(Y)+1/4(M)T1/4(R)+1/4(Y)+1/2(W)淡红黄

间色与非互补色的原色混合,随着浓度的不同,不仅明度和饱和度发生变化,而且色相也产生了变化。混合色料浓度(厚度)大时,呈现出间色的色相;当浓度减小时,变为间色和原色的混合色相。

(3)间色与间色混合

两种间色色料混合,随着色料的浓度的不同,呈现的色彩出现了很大的变化。将理想红滤色片和绿滤色片叠合在一起,当1个单位的白光入射时,随着滤色片厚度的变化,会呈现出不同的颜色。呈色过程如图2-15所示,表达式如下:

① 1个单位的红滤色片和1个单位的绿滤色片叠合:

{(Y)+(M)}+{(Y)+(C)}=2(Y)+(M)+(C)(BK) 黑色

② 1/2个单位厚的红滤色片和1/2个单位厚的绿滤色片叠合:

{1/2(Y)+1/2(M)}+{1/2(Y)+1/2(C)}=(Y)+1/2(M)+1/2(C)1/2(Y) 黄色

③ 1/4个单位厚的红滤色片和1/4个单位厚的绿滤色片叠合:

{1/4(Y)+1/4(M)}+{1/4(Y)+1/4(C)}=1/2(Y)+1/4(M)+1/4(C)1/4(Y)+1/2(W) 淡黄色

间色色料混合颜色较深,当色料浓度(厚度)较大时呈现黑色,饱和度为0,随着浓度(厚度)的减小,逐渐呈现出色彩、明度变大,饱和度迅速增加,达到一定程度后逐渐减小。

这种间色混合现象,常出现于光源亮度改变的情况下,对于某一间色混合色样(颜料层厚度不变),当照明光源的亮度改变时,同样会出现色相、明度和饱和度的变化,这对印刷色彩的再现及包装色彩的设计具有一定的指导意义。

以上是复色的几种基本混合方法。此外还有原色与复色、间色与复色、原色与黑色的混合方法,均可以得到新的复色。无论那种混合方法,实质上都是三原色料等比例或不等比例的混合。由此,可以进一步证明:三原色料可以混合出现各种颜色,这是绘画或印刷中,用少数几种色料调制出各种色彩的理论依据。

三 加色法与减色法的关系

加色法与减色法都是针对色光而言,加色法指的是色光相加,减色法指的是色光被减弱。

加色法与减色法又是迥然不同的两种呈色方法。加色法是色光混合呈色的方法。色光混合后,不仅色彩与参加混合的各色光不同,同时亮度也增加了;减色法是色料混合呈色的方法。色料混合后,不仅形成新的颜色,同时亮度也降低了。加色法是两种以上的色光同时刺激人的视神经而引起的色效应;而减色法是指从白光或其它复色光中减某些色光而得到另一种色光刺激的色效应。从互补关系来看,有三对互补色: R-C;G-M;B-Y。在色光加色法中,互补色相加得到白色;在色料减色法中,互补色相加得到黑色。

色光三原色是红(R)、绿(G)、蓝(B),色料三原色是青(C)、品红(M)、黄(Y)。人眼看到的永远是色光,色料三原色的确定与三原色光有着必然的联系。在对人眼的视觉研究中表明,视网膜上的中央窝内,有三种感色细胞,即感红、感绿、感蓝视锥细胞。自然界的各种色彩,可以认为是这三种视锥细胞受到不同刺激所产生的反映,因此,我们只要有效地控制进入人眼的三原色光的刺激量,也就相对控制了自然界各种物质的表面颜色。在色光相加混合中,通过红、绿、蓝三原色光能混合出较多的颜色,有最大的色域,为此我们选择青色来控制红光,青色是红色的补色它能最有效地控制(吸收)红光;同理,选择绿色的补色品红来控制绿光;选择蓝色的补色黄色来控制蓝光。因为青、品红、黄通过改变自身的厚度(或浓度),能够很容易的改变对红、绿、蓝三原色光的吸收量,以完成控制进入人眼的三原色光的数量。

利用青、品红、黄对反射光进行控制,实际上是利用它们从照明光源的光谱中选择性吸收某些光谱的颜色,以剩余光谱色光完成相加混色作用,同时也是对色光三原色红、绿、蓝的选择和认定。色光三原色红、绿、蓝和色料三原色青、品红、黄是统一的,具有***同的本质,是一个事物的两个方面。它们都能得到较大的色域是必然的,因为照射到人眼的是色光。

色光加色法与色料减色法的联系与区别,见表2-3。

四、设计软件中三原色的明度关系

在CorelDRAW 9.0(或Photoshop)中,我们给出RGB值便可观察到Lab值(图2-16),结果见表2-4。

图2-16黄色的心理明度 图2-17色相环中色彩的明度

从表2-4 心理明度L值的大小可以看出在设计软件中色彩的明度顺序是:白、黄、青、绿、品红、红、蓝、黑。RGB模式为加色法模式,色光混合亮度增加,RGB的值相加数值越大色彩越明亮。CMY模式为减色法模式,色料混合光能量减小,CMY的值相加数值越大色彩越深暗。

从组成的六色色相环(图2-17)中可以看出,加色法模式中,红、绿、蓝为色光三原色明亮度较低,混合后明亮度增大,得到明亮度相对较高的黄光、青光和品红光;减色法模式中,青、品红、黄为色料的三原色明度较高,混合后光能量减小,得到明度相对较低的红色、绿色和蓝色。在六色色相环中,红、绿、蓝在其区域内明度最低,青、品红、黄在其区域内明度最高。