标准差与方差的区别与联系
标准差与方差的区别与联系如下:
标准差与方差的区别:
方差(Variance)是实际值与期望值之差的平方平均数,而标准差(Standarddeviation)是方差的算术平方根。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
方差和标准差。方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。
方差相应的计算公式为标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。
DSTDEV()操作目标是样本总体的部分样本。此值是估算全局标准偏差。
DSTDEVP()如果数据库中的数据为样本总体,则此值是真实标准偏差。
这根统计学有关。前者是利用部分数据推测全局样本的标准偏差。内部使用的统计公式不一样你就不要纠结了。有兴趣你必须找一本统计学看看。或者到百度上看看标准偏差词条。后者是全局的实际标准偏差。应用范围不一样。
一般来说做样本调查都没办法调查样本总体。只能随机在总体中抽取有代表性的样本构成研究对象。
因此此时你得到的数据都是部分样本。此时应该使用dstdev(),来估算全局样本偏差。
如果你使用的是dstdevp(),那么得到的结果只是采样样本的偏差。
标准差与方差的联系:
标准差是方差的算术平方根,标准差用s表示,方差是标准差的平方,方差用s^2表示,光看它的表示方法就可以知道二者的关系。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。